Analysis of the Ion Adsorption–Desorption Characteristics of Biofilm Matrices

نویسندگان

  • Andi Kurniawan
  • Tatsuya Yamamoto
  • Yuki Tsuchiya
  • Hisao Morisaki
چکیده

The characteristics of biofilm polymers formed on stone surfaces in Lake Biwa and ion adsorption and desorption to and from these biofilms were investigated. The results indicated that both positively and negatively charged sites exist in the biofilm polymer. A physicochemical interaction between these sites and ions in the surrounding water seems to promote the adsorption of ions to the biofilm through an attractive electrostatic interaction and an ion-exchange mechanism. The results also indicated that, in comparison with ion-exchange resins, ions were more loosely bound to and desorbed more easily from the biofilm polymer. This suggests that microbes in the biofilm can readily use these ions as nutrient ions. Our present findings indicate that the biofilm may play an important role in supplying nutrient ions to microbes in the biofilm and in the development of a nutrient-rich environment within the biofilm through both ion adsorption and desorption. This study shows for the first time that the inside of a biofilm can be a sustainable environment for microbes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption Behavior of MWAR Toward Gd(III) in Aqueous Solution

Adsorption and desorption behavior of Gd(III) ionon macroporous weak acid resin (MWAR) had been investigated.The influence of operational conditions such as contact time, initial concentration of Gd(III) ion, initial pH of solution and temperature on the adsorption of Gd(III) ion had been examined. Experimental data were exploited for kinetic and thermodynamic evaluations ...

متن کامل

A Systematic Study on the Effect of Desilication of Clinoptilolite Zeolite on its Deep-Desulfurization Characteristics

Natural clinoptilolite zeolite (CLP) in its original or metal ion- exchanged form (Ni2+) is a weak adsorbent for relatively large thiophene derivative molecules like benzothiophene (BT) and di-benzothiophene (DBT), due to its rather restricted micro-channel structure. A novelty of this work is that upon desilication treatments, it is possible to enhance the adsorption behavior of Ni2+-exchanged...

متن کامل

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

Adsorption behavior of cadmium on modified mesoporous aluminosilicates

In this study, mesoporous MCM-41 has been modified by incorporation of aluminum ion asa rapid, simple and inexpensive method for modification. The adsorbent is characterized usingpowder X-ray diffraction and nitrogen adsorption-desorption isotherm data. The distributioncoefficient of cadmium ion on the mesoporous aluminosilicates has been enhanced with theincrease of the aluminum in the framewo...

متن کامل

New hybrid nanomaterial derived from immobilization of a molybdenum complex on the surface of multi-walled carbon nanotubes

In this work, we report a new well dispersed molybdenum complex attached through the mediation of aminopropylsilyl groups on the surface of multi-walled carbon nanotubes (MWCNTs). The prepared hybrid nanomaterial was characterized with different physicochemical methods such as Fourier transform infrared and atomic absorption spectroscopies, transmission electron microscopy, energy-dispersive X-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2012